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ABSTRACT
Affective states play a crucial role in learning. Existing Intelligent 
Tutoring Systems (ITSs) fail to track affective states of learners 
accurately. Without an accurate detection of such states, ITSs are 
limited in providing truly personalized learning experience. In our 
longitudinal research, we have been working towards developing 
an empathic autonomous ‘tutor’ closely monitoring students in 
real-time using multiple sources of data to understand their 
affective states corresponding to emotional engagement. We focus 
on detecting learning related states (i.e., ‘Satisfied’, ‘Bored’, and 
‘Confused’). We have collected 210 hours of data through authentic 
classroom pilots of 17 sessions. We collected information from two 
modalities: (1) appearance, which is collected from the camera, and 
(2) context-performance, that is derived from the content platform. 
The learning content of the content platform consists of two section 
types: (1) instructional where students watch instructional videos 
and (2) assessment where students solve exercise questions. Since 
there are individual differences in expressing affective states, the 
detection of emotional engagement needs to be customized for each 
individual. In this paper, we propose a hierarchical semi-supervised 
model adaptation method to achieve highly accurate emotional 
engagement detectors. In the initial calibration phase, a 
personalized context-performance classifier is obtained. In the 
online usage phase, the appearance classifier is automatically 
personalized using the labels generated by the context-performance 
model. The experimental results show that personalization enables 
performance improvement of our generic emotional engagement 
detectors. The proposed semi-supervised hierarchical 
personalization method result in 89.23% and 75.20% F1 measures 
for the instructional and assessment sections, respectively.   
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1. INTRODUCTION
Educational systems should provide personalized learning 
(“accommodate-for-each”) rather than a “one-size-fits-all” 
approach [1]. Intelligent Tutoring Systems (ITSs) are becoming 
popular due to their promising capabilities for personalizing learner 
experience [2]. ITSs allow (1) monitoring students’ learning 
process by tracking their interactions with the content platform, (2) 
creating a learning profile for each student, and (3) providing real-
time feedback for any learning difficulties [3], [4]. However, 
existing ITSs fail to track affective states of learners very 
accurately. Without an accurate detection on such states, ITSs are 
limited in providing truly personalized learning experience. 

In the related literature, there are a limited number of studies 
focusing on detecting affective states of learners [5] to realize 
Affective Tutoring Systems [6]. For example, in [7], the binary 
classification problem of whether a student was interested or not 
while interacting with learning activities was investigated. In [8], 
[9], and [10], automatic recognition of frustration was investigated. 
In [11], students’ postures are used to track boredom and flow. In 
[12], affective states of boredom, confusion, frustration, delight, 
and engagement were researched. In [13], affective state detection 
was investigated for detecting confidence, frustration, excitement, 
and interest. The majority of these studies focus on generic 
affective state models. However, individuals differ in their 
emotional experience depending on their personal characteristics 
(e.g. gender, age) and personality traits [14], and their reactions are 
moderated by their personality: Individuals scoring high in 
neuroticism, are more likely to experience negative emotions and 
to view the world negatively [15]. On the other hand, individuals 
scoring high in extroversion experience more positive emotions 
[16]. As individual differences play an important role in affect 
recognition, AI models should embrace more personalized 
approaches. In order to target individual differences, person-
dependent modeling is usually applied with varying portions of 
individual data [17]: (1) An available generic model is refined by 
adding individual training data, or (2) only individual data is used 
to create the model. The first method allows to capture general 
tendencies with the generic model and to fine-tune individual 
effects with the personal data. In the second method, a truly 
personal model can be achieved; but it has the drawback of 
requiring large amount of labeled training data for each new person.

In our longitudinal research, we have been working towards 
developing an empathic autonomous ‘tutor’ closely monitoring 
students in real-time using multiple sources of data to understand 
their emotional engagement. We are currently using two different 
modalities to infer a learner’s emotional engagement: (1) 
Appearance modality, where a camera is utilized to capture visual 
information; and (2) context-performance modality, where context 
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Figure 1. Overall scheme of the generic emotional engagement detector.

and performance information is gathered from a content platform. 
The general scheme of the system is given in Figure 1: For each 
modality, we implemented a separate feature extractor, and then 
trained a separate generic supervised classifier, and the overall 
emotional engagement is defined using the two classifier outputs. 
In our research, motivated by the circumplex model [18], we focus 
on the affective states of ‘Satisfied’, ‘Bored’, and ‘Confused’ 
(Figure 1, right).

In this paper, we propose a semi-supervised hierarchical method to 
overcome the drawback of providing large amounts of training data 
for truly personalized models that recognize learners’ emotional 
engagement. We observed that the context-performance classifier 
achieves high accuracies even with a limited amount of person-
specific training set, whereas the appearance classifier needs a 
larger set of labeled data to achieve a high accuracy. We utilize this 
effect in our proposed method: We start with a calibration phase, 
which includes personalization of the context-performance 
classifier. The second level of the hierarchical method includes 
automatic personalization of the appearance model, where the 
personalized contextual classifier is utilized as the label predictor. 
We compare the performance of our semi-supervised hierarchical 
approach with generic models and fully personalized models.

This paper is organized as follows: In Section 2, the proposed 
method is explained in detail, whereas Section 3 summarizes the 
experimental results obtained. In Section 4, conclusions and future 
directions are outlined.

2. METHODOLOGY OVERVIEW
Our aim is to develop a multi-modal system that can detect a 
learner’s emotional engagement. For improving the performance 
of our emotional engagement detector, we obtain personalized 

Figure 2. Timeline for the usage of different training sets and 
the corresponding output models.

empirically shown (see Section 3.2 and 3.4 for results), the 
improvement achieved by personalization is evident for both 
models expressing each individual’s characteristics: As of the 
modalities considered: For context-performance modality, the 
classifier achieves high accuracies with a limited amount of 
person-specific training data; whereas for the appearance 
modality, classifier more personal data is needed to achieve 
similar results. Motivated by these findings, in this paper, we 
propose a personalization approach that adapts the emotional 
engagement models in a hierarchical manner: First, the 
context-performance classifier is personalized in a calibration 
phase. The labeled personal data classifier is then used in the 
online-usage phase to automatically provide labels (as a one-
sided co-training is used to improve the context-performance 
classifier through model personalization. The personalized 
context-performance approach [19]) for the personalization of 
the appearance classifier. After the calibration phase, no more 
labels are required. The different phases (calibration and 
online-usage), the corresponding training sets, and the output 
models are illustrated in Figure 2: At the beginning of the 
calibration phase, we have a generic context-performance 
classifier trained in an offline manner using the initial training 
set. This set is collected from different students. In the 
calibration phase, the context-performance classifier is 
personalized using labeled subject-specific data. In the online 
usage phase, subject-specific data is collected, and the 
personalized context-performance classifier acts as the 
automatic label generator. The automatically labeled subject-
specific data is then used to personalize the appearance 
classifier. In the following subsections, further details about 
each modality, classifier, and personalization strategy is 
given. 

2.1 Data Modalities & Feature Extraction
The learning content is provided by a content platform, in the form 
of two section types of instructional (where students watch 
instructional videos) and assessment (where students solve exercise 
questions). The computing device used for content retrieval is 
equipped with a 3D camera (i.e., Intel® RealSense™ F200 
Camera). As visualized in Figure 1, we consider two sources of 
information as the two modalities (as in [20]): (1) Appearance 
modality which is acquired through the camera, and (2) context-
performance modality which is gathered from the content platform 
and includes data related to the learning content or the profile of the 
learner. To extract features for each modality, the raw data are 
segmented into windows of 8-seconds length: In [21], various 
window sizes between 2-180 seconds were tested, and 8-seconds 
length was empirically found out to be suitable for the engagement 
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detection problem. Therefore, in our further experiments we 
utilized windows of 8 seconds. Moreover, considering the 
continuous nature of the video data, we used a sliding window with 
an overlap of 4-secs. 

2.1.1 Appearance Features
The videos of students were recorded with Intel® RealSense™ 
F200 Camera, and they include the RGB and depth streams of the 
student (including face and upper body). The frame-wise raw data 
are fed into the Intel® RealSense™ SDK [22] to extract face 
location and head position in the 3D space, 2D/3D positions of 78 
facial landmarks, head pose, 22 facial expressions, and seven basic 
facial emotions. These are employed in the extraction of segment-
wise features necessary for engagement detection. The extracted 
appearance features include various L-estimator statistical values 
(e.g. tri-mean of head velocity) and energy calculations (e.g. trend 
of pose energy), related to head position and pose, to facial 
expressions, and to seven basic emotions. The groupings of higher-
level appearance features used in this paper are given in Table 1.

2.1.2 Context and Performance Features
Context features are extracted partly from the user profile and 
session information (i.e. gender, age, time of day), in addition to 
the data provided by the content platform (i.e. video duration, 
exercise/trial number, time within session). They are utilized for 
enabling context-awareness, and they are related to the educational 
content, to the environment, or to the student in general. They are 
present in both section types of instructional and assessment. The 
performance features are extracted from the user profile data 
containing user characteristics provided by the content platform. 
Note that the performance features are present only for the 
assessment sections; and they are related to grade, time spent, 
number of trials, or number of hints taken for a question. Since 
contextual and performance features are extracted using the same 
sources of information (i.e., the content platform), we employed 
data fusion at feature level and obtained a single context-
performance feature set. The groupings of context-performance 
features are given in Table 1, together with feature counts and some 
exemplary features.

Table 1. Appearance (Appr) and context-performance (C-P) 
feature subgroups and corresponding feature counts.

Appr Feature Groups (Counts) Examples

Tracking ratio (2) Position and pose tracking

Head position / pose (128) trend of pose energy, standard 
deviation of head position, etc.

Facial expressions (32) Number of eye raisers per 
segment, mean of smile, etc.

Seven basic emotions (28) Mean of anger intensity, 
number of joyful segments etc.

C-P Feature Groups (Counts) Examples

Time related (6) Time from beginning, 
video/attempt duration, etc.

Trial related (3) Trial number, number of trials 
until success, etc.

Hint related (5) Number of hints used on 
attempt, on question, etc.

Grade related (7) Grade, correct attempt 
percentage, etc.

Other (3) Gender, question number from 
beginning, etc.

2.2 Uni-modal Classification
As seen in Figure 1, the outputs of modality-specific feature 
extractors are fed into the corresponding uni-modal classifiers. As 
uni-modal classifier for both modalities, we utilized the Random 
Forest classification method [23]: In the Random Forest algorithm, 
a multiple number of decision trees are trained using random sets 
of training data and features. During testing, the test sample is 
predicted with all trained decision trees. Multiple decisions from 
individual trees are then analyzed with majority voting to generate 
a final prediction. Considering the advantages of Random Forests 
(e.g., no overtraining risk, no need for cross validation), we trained 
two separate forest with 100 trees each: (1) Appearance classifier, 
and (2) context-performance classifier.

2.3 Confidence Calibration
During the calibration phase, our generic context-performance 
classifier needs to separate samples with low confidence to decide 
when to request self-labels. Moreover, during the online usage 
phase, our personalized context-performance classifier needs to 
provide labels with high confidence since they are used as auto-
labels for personalizing the appearance classifier. Therefore, 
having well-calibrated confidence values is crucial for our 
proposed personalization strategy. For each test sample, the 
Random Forest classifier outputs a final prediction, achieved by 
applying majority voting over 100 trees; and a probability score, 
calculated as the ratio of trees with the output of the majority vote. 
This probability score can be taken as a measure of confidence in 
the prediction, because samples with more trees agreeing on the 
same prediction are more likely to be classified correctly. However, 
these probabilities are usually not well-calibrated and can be 
statistically unreliable [24].  In the literature, calibration procedures 
for Random Forests, and in general for machine learning, have been 
examined in previous studies [24], [25], [26]. We employed one of 
the most popular calibration methods known as isotonic regression 
[26]: In this method, a general form of binning is suggested such 
that no specific number of bins or limits for the bin size is required. 
For further details of this algorithm, see [26].

2.4 Uni-modal Personalization 
As shown in [27] and [17], person-specific models achieve 
significant improvement over person-independent models for 
the emotion detection problem. In this paper, it is empirically 
shown that this also holds for the detection of learner’s 
emotional engagement states (see Section 3.4). In our 
research, generally we envision to achieve personalized 
models using active learning strategies: At randomized time 
points, the student will be asked to provide his/her current 
affective state through giving self-labels. At the end of each 
session, the provided labels and the corresponding features 
will be added to the training data and retraining will take place 
to yield a more person-specific model after each session. For 
model personalization, the labeled person-specific data can 
either be added to the training set of the generic model (i.e., 
‘Adapted’), or it can be utilized alone (i.e., ‘Personal’). For 
the experiments in this paper, we experimented with both the 
‘Adapted’ and the ‘Personal’ approach. We utilized ground 
truth labels to investigate the improvements we can achieve 
by personalization strategies. For these experiments, we 
employed all subject-specific training samples to see the upper 
limit for the performance of such a personalized model. 
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Figure 3. Calibration and online usage phases for the proposed hierarchical personalization approach.

HIGH MEDIUM LOW
0

2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000

unknown satisfied bored confused

Agreement Levels

In
st

an
ce

 C
ou

nt
s

HIGH MEDIUM LOW
0

2500

5000

7500

unknown satisfied bored confused

Agreement Levels

In
st

an
ce

 C
ou

nt
s

(a) Instructional (b) Assessment
Figure 4. Distribution of samples for different agreement levels of (1) High (5/5), (2) Medium (4/5), and (3) Low 

(3/5), for (a) Instructional, and for (b) Assessment sections.

2.5 Hierarchical Personalization
Modality-specific models can be personalized using active 
learning strategies. Although both modalities benefit from 
personalization (see Section 3.4), context-performance 
converges with very limited data, whereas the appearance 
classifier requires more labeled data to reach the accuracy 
levels of the context-performance. Motivated by the 
importance of the appearance modality, which will be 
available even when no specific content platform is utilized 
(e.g., the student is watching any video or reading any article 
on the web), we propose a hierarchical personalization 
approach. The overall scheme of the proposed approach is 
given in Figure 3: First, during a calibration phase, the labels 
are predicted in real time using the generic context-
performance classifier. For random predictions with low 

confidence, labels are requested. The confidently predicted 
samples and the self-labeled instances are utilized to augment 
the training set with subject-specific features and the 
corresponding labels. From time to time (i.e., end of each 
session), the context-performance classifier is retrained to 
obtain improved models. In the online usage phase, the 
personalized context-performance classifier is utilized to 
generate labels necessary for appearance model 
personalization. Once again, the confidence of the context-
performance classifier is assessed to choose confidently 
predicted samples. Employing both the self-labeled data of the 
calibration phase and the automatically labeled data during the 
online usage phase, the appearance models are retrained for 
personalization. With this strategy, the aim is to personalize 
the appearance model without intervening with the student 
(i.e., requesting self-labels).
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Table 2. Engagement detection results (F1-measures) for instructional and assessment sections on Appearance and Context-
Performance modalities, using: (1) the ‘Generic’, (2) ‘Adapted’, and (3) the ‘Personal’ models.

AVERAGE
TRAINING SIZE/MODEL

CONTEXT-PERFORMANCE
CLASSIFIER (%)

APPEARANCE
CLASSIFIER (%)Section Type Classes

Generic Adapted Personal Generic Adapted Personal Generic Adapted Personal

Unknown 967 1018 51 9.62 72.97 85.38 10.73 24.85 33.04
Satisfied 967 2272 1305 55.76 96.12 97.18 61.04 87.63 89.65

Bored 967 1542 575 39.68 93.33 94.41 44.93 70.91 73.54
INSTRUCTIONAL

OVERALL 2901 4832 1931 49.50 96.13 97.32 55.79 85.44 89.30

Unknown 1886 2210 324 27.94 72.02 72.75 33.53 47.21 49.48
Satisfied 1886 2883 997 76.32 94.04 94.39 60.58 83.43 83.79

Confused 1886 2044 158 46.59 82.05 85.01 17.12 37.64 44.04
ASSESSMENT

OVERALL 5658 7137 1479 63.41 90.24 90.89 48.12 75.25 76.37

3. EXPERIMENTAL RESULTS
3.1 Data Collection and Labeling 
We ran authentic classroom pilots with 9th grade students (age of 
14-15) using an online math learning platform which provides 
instructional videos and assessment items. In total, data were 
collected from 20 students in 17 one-hour sessions to generate 210 
hours of data. During each session, the videos of  students was 
recorded with a 3D camera (i.e., Intel® RealSense™ Camera F200) 
and the context and performance logs were collected through the 
content platform. Since our aim was to investigate the 
personalization strategies and the amount of available personal data 
was important for the personalization experiments, we selected 
students who attended most of the sessions (i.e., twice a week), and 
carried out our experiments with the data from nine students. 
For the supervised training phase of our models and the 
performance evaluation of our system, ground truth labels were 
necessary. Following the labeling methodology of [28], each 
recording was labeled by five different experts with a background 
in psychology or education, who defined segments based on 
observed state changes. Instances for feature extraction were 
defined as sliding windows of 8-seconds with overlaps of 4-
seconds. As the Krippendorff’s alpha computed among multiple 
labelers were low (0.4) [28], highlighting the subjective nature of 
the affective labeling task, final labels were assigned to each 
instance by applying majority voting together with validity filtering 
[20]: The ratio of majority votes was computed and the instances 
were grouped as of high (5/5), medium (4/5), or low (3/5) 
agreement. If there is no majority among labelers (i.e., the majority 
votes is below 3/5), the instance is labeled as instances of 
disagreement. In Figure 4, the data distributions of agreement levels 
are given. By examining these distributions, we decided to use 
high-to-medium agreement samples for the instructional. For the 
assessment, however, we chose high-low agreement samples due to 
limited sample counts, and included disagreement samples as 
instances of ‘Unknown’ class. Furthermore, we examined class-
specific distributions for different section types, and we decided not 
to use ‘Confused’ class for the instructional, and ‘Bored’ class for 
the assessment sections due to too few samples. 

3.2 Generic Classification Results
Table 2 provides a summary of the results produced by the generic 
model (see columns entitled with “Generic”): Discrete Random 

Forest classifiers are trained for each section type (instructional vs. 
assessment) and for each modality (appearance vs. context-
performance). In order to reduce the effects of overfitting to each 
test subject, leave-one-subject-out cross-validation approach was 
applied: The training samples of all the other students were utilized 
to construct the training set of that test subject’s classifiers. 
Moreover, for the generic models, we employed balanced sample 
sets for each class: From the training set, 10-fold random selection 
is applied to construct training sets and the averaged results are 
reported on test sets: As results, average F1 measures are reported 
to incorporate both the precision and recall metrics.
By examining the results, one can easily notice that context-
performance classifier performance is low during instructional 
sessions (49.50%), since valuable performance-related features 
extractable for assessment sections are not present in addition to 
limited training sizes. For the assessment sections, improved results 
are reported for the context-performance modality (63.41%). When 
we compare the results for the two modalities, we see different 
trends: For the instructional sections, appearance classifier 
(55.79%) performs better than the context-performance classifier 
(49.50%). For the assessment, context-performance modality 
(63.41%) yields higher accuracies than the appearance (48.12%). 

3.3 Confidence Calibration Results
In order to observe the effects of calibration on confidence scores, 
we plotted the histograms, i.e. the number of samples at each 
confidence value interval, both for the true and false predictions of 
our context-performance classifier. In Figure 4, confidence value 
distributions are presented for both instructional and assessment 
sections, where we can compare the results before (on the left) and 
after (on the right) the confidence calibration using isotonic 
regression method [25]: Without confidence calibration, it is visible 
that true and false predictions are not separable by employing 
thresholding over the confidence scores. However, after 
calibration, thresholding can be applied. In our dataset, we 
empirically estimated confidence thresholds on the training sets: 
Samples with confidence values above 0.55 and 0.70 can be 
assumed highly confident for instructional (Figure 4(b)) and 
assessment (Figure 4(d)) sections, respectively. 

3.4 Uni-modal Personalization Results 
In this paper, ground truth labels are employed when constructing 
the person-specific labeled sets for the personalization experiments.   
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(a) Instructional – Uncalibrated Confidences (b) Instructional – Calibrated Confidences

(c) Assessment – Uncalibrated Confidences (d) Assessment – Calibrated Confidences

Figure 4. Confidence distributions for the Context-Performance classifier with and without confidence calibration are 
given for different section types: (a), (b) for instructional; (c), (d) for assessment.

For model personalization, we experimented with two approaches: 
(1) ‘Adapted’, where the person-specific data is augmented to the 
training set of the generic model; and (2) ‘Personal’, where the 
person-specific data is used alone in the model training phase. 
These results mainly set the upper limits for the performance of our 
personalization approaches. In Table 2, the average number of 
training sizes (columns 3-5) and the averaged F1 measures for the 
context-performance (columns 6-8) and appearance (columns 9-11) 
modalities are given. As the overall results (last rows) show, both 
the adapted and the personal models achieve higher accuracies 
when compared to generic models, indicating that the information 
residing in both the context-performance and the appearance 
modalities are specific to each individual. Moreover, when personal 
results of different modalities are compared, it is seen that the 
improvement for the context-performance classifier (from 49.50% 
to 97.32% for instructional, and from 63.41% to 90.89% for 
assessment) is more evident and high accuracies can be achieved 
even with limited amount of personal data. For the appearance 
modality, with the same amount of personal data, lower accuracies 
can be achieved (89.30% for instructional, and 76.37% for 
assessment).  

3.5 Hierarchical Personalization Results
Motivated by the highly performing personalized context-
performance classifier, we proposed a model personalization 
approach for the appearance classifier which does not require self-
labels: As explained in Section 2.5, the proposed hierarchical 
personalization approach utilizes the personalized context-
performance classifier to automatically label data for the 
personalization of the appearance classifier. In the hierarchical 
approach, the highly confident samples labeled by the ‘Personal’ 
context-performance classifier are included in person-specific 
training sets. We have also experimented with a hybrid approach, 
where the unconfident classified samples are fed into the training 
phase using ground truth labels. This corresponds to requesting 
self-labels only for the samples that are unconfidently labeled by 
the personalized context-performance classifier. The results for the 
appearance modality, where three different personalization 
approaches are tested are given in Table 3: (1) ‘Hierarchical’, 
corresponding to the proposed hierarchical personalization scheme; 
(2) ‘Hybrid’, which incorporates ground-truth labels to the 
hierarchical approach for unconfident samples; and (3) ‘Full’, 
where ground-truth labels for all training samples are utilized to 
construct personal training sets and gives the upper limit for the 
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performance. The ‘Hierarchical’, ‘Hybrid’, and ‘Full’ results are 
given both for the ‘Adapted’ and the ‘Personal’ approach, where 
the person-specific samples are either added to the generic sets or 
utilized alone for model training. As the results indicate, similar 
results are achieved with either the ‘Adapted’ or the ‘Personal’ 
approaches. When ‘Personal’ results are investigated to compare 
the proposed ‘Hierarchical’ method with the ‘Full’ models (setting 
the upper limits), it is visible that similar results are obtained: For 
the instructional sections, ‘Hierarchical’ models are obtained using 
0.55 confidence threshold (i.e., 99% of samples are confidently 
labeled), and they achieve 89.23%. For the assessment sections, 
‘Hierarchical’ models achieve 75.20% F1 measure using a 
threshold of 0.70 (i.e., 80% of samples labeled as confident). These 
results are very similar to the results achieved by the ‘Full’ models, 
where the ground truth labels are utilized: For instructional and 
assessment, 89.30% and 76.37% F1 measures are obtained, 
respectively. When the ‘Hybrid’ results for the ‘Personal’ approach 
are investigated, we can say that similar results are obtained by the 
‘Hierarchical’ approach. 

4. CONCLUSIONS AND FUTURE WORK
In this work, our aim is to infer the emotional engagement of a 
learner using two modalities, namely appearance and context-
performance. In order to target individual differences, we propose 
a semi-supervised hierarchical method, which overcomes the 
drawback of providing large amounts of training data necessary for 
a truly personalized model: Since the context-performance 
classifier achieves high accuracies even with a limited amount of 
training data, in an initial calibration phase, we train a personalized 
context-performance classifier. Utilizing the personalized context-
performance classifier as the label predictor during the online usage 
phase, we personalize the appearance model with automatically 
labeled person-specific data. In our experiments, we investigated 
two personalization strategies using the ground truth labels: (1) 
‘Adapted’, where the initial training set is augmented with the 
person-specific data; and (2) ‘Personal’, where only the personal 
data is utilized in model retraining. Moreover, for a better 
understanding of how the engagement detector performs, we 
treated different section types of instructional and assessment 
separately. For the evaluation of the proposed hierarchical 
personalization approach, we compared results with those of the 
generic and the personalized models (‘Adapted’ and ‘Personal’). 

For our experiments, we collected data from 9th grade students 
during a semester while they were using an online math learning 
platform. The collected data were labeled by experts and their 
multiple decisions were processed by majority voting and validity 

filtering to provide the ground truth labels for the affective states of 
‘Satisfied’, ‘Bored’, and ‘Confused’. 

In a leave-one-subject-out cross validation, the modality-specific 
generic models indicated that the appearance modality is more 
informative for the instructional sections (55.79% vs. 49.50% F1 
measure), whereas for the assessment sections the context-
performance modality becomes more representative (63.41% vs. 
48.12% F1 measure). As the full personalization experiments 
showed (i.e., ‘Adapted’ and ‘Personal’), information included in 
both of the modalities are person-specific, thus model 
personalization helps to achieve high performance for emotional 
engagement detection. Even with the limited amount of data 
utilized in the ‘Personal’ strategy, context-performance classifier 
achieve F1 measures of 97.32% during instructional sessions and 
90.89% during assessment sessions. For the appearance classifier, 
89.30% and 76.37% F1 measures are achieved for instructional and 
assessment sections, respectively. These results for the fully 
personalized models indicate that the context-performance models 
can be personalized to act as the label predictor for the appearance 
modality, which needs a larger amount of labeled data to achieve 
high performance levels as the context-performance modality. We 
evaluated the proposed hierarchical personalization approach 
(‘Hierarchical’) and compared the results with the fully 
personalized models, which set the upper limits with the available 
data. We also experimented with the ‘Hybrid’ approach, using 
ground truth labels when the label predictor is not confident, and 
compared it with the results of the ‘Hierarchical’ approach. As the 
results indicated, with the proposed hierarchical personalization 
approach, the performance levels of the fully personalized models 
were achieved: 89.23% and 75.20% F1 measures are obtained for 
the instructional and the assessment sections, respectively. The 
results are similar for the ‘Hybrid’, indicating that using only the 
automatic labels generated by the context-performance model is 
sufficient. 

For the final system, we envision to use self-labels to obtain labeled 
person-specific sets. We are currently designing a new data 
collection pilot, where self-labels are requested from the students 
at randomized time points. Therefore, we will be evaluating the 
performance of the hierarchical personalization approach using 
self-labels as proposed. Moreover, we are planning on including 
bio-sensors as an additional modality and understand whether any 
bio-sensor data can be beneficial for automatic label generation. 
The new pilot will enable us to conduct future experiments on an 
extended set of students. Moreover, on the extended database, we 
will be further investigating supervised and semi-supervised 
approaches for model personalization.  

Table 3. Engagement detection results (F1-measures) for instructional and assessment sections on Appearance (Appr.) 
using different strategies: (1) ‘Generic’, (2) ‘Adapted-Hierarchical’, (3) ‘Adapted-Hybrid’, (4) ‘Adapted-Full’, (5) 
‘Personal-Hierarchical’, (6) ‘Personal-Hybrid’, and (7) ‘Personal-Full’.

ADAPTED PERSONALSection Type Classes GENERIC
Hierarchical Hybrid Full Hierarchical Hybrid Full

Unknown 10.73 25.31 25.21 24.85 29.44 30.55 33.04
Satisfied 61.04 87.78 87.77 87.63 89.34 89.23 89.65

Bored 44.93 70.83 70.77 70.91 72.92 72.74 73.54
INSTRUCTIONAL

OVERALL 55.79 85.48 85.56 85.44 89.23 89.06 89.30
Unknown 33.53 43.52 47.85 47.21 42.25 49.07 49.48

Satisfied 60.58 82.65 83.15 83.43 83.17 83.84 83.79
Confused 17.12 33.92 38.16 37.64 38.88 44.86 44.04

ASSESSMENT

OVERALL 48.12 73.92 75.22 75.25 75.20 76.40 76.37
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